

Current Transducer LA 100-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			100			Α
I _P	Primary current, measuring range			0 ± 150			Α
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance @		$T_A =$	70°C	T _A =	= 85°C)
			R _{M min}	$\mathbf{R}_{M\;max}$	R _{M min}	$\mathbf{R}_{M\;max}$	
	with ± 12 V	$@ \pm 100 A_{max}$	0	50	0	42	Ω
		@ ± 120 A _{max}	0	22	0	14	Ω
	with ± 15 V	@ ± 100 A _{max}	0	110	20	102	Ω
		@ ± 150 A _{max}	0	33	20	25	Ω
I _{SN}	Secondary nominal r.m.s.	current		50			mΑ
K _N	Conversion ratio			1:3	2000		
v _c	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption			10 (@ ±15	V)+ I _s	mA
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isola	ation test, 50 Hz, 1	mn	2.5		Ü	kV

Accuracy - Dynamic performance data

X	Accuracy $@ I_{PN}$, $I_A = 25^{\circ}C$	@ ± 15 V (± 5 %)	± 0.45		%
		@ ± 12 15 V (± 5 %)	± 0.70		%
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity		< 0.15		%
			Тур	Max	
Io	Offset current @ $I_p = 0$, $T_{\Delta} = 2$	25°C		± 0.10	mΑ
I _{OM}	Residual current 1) @ $I_p = 0$, a	ifter an overload of 3 x I _{PN}		± 0.15	mΑ
I _{OT}	Thermal drift of I	- 25°C + 85°C	± 0.05	± 0.25	mΑ
0.	Ç	- 40°C 25°C	± 0.10	± 0.50	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}		< 500		ns
t,	Response time 2 @ 90 % of	I _{PN}	< 1		μs
di/dt	di/dt accurately followed		> 200		A/µs
f	Frequency bandwidth (- 1 dB)	DC 2	200	kHz

General data

$T_{_{A}}$	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 50 + 95	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_{A} = 70^{\circ}C$	120	Ω
Ü		$T_{\Delta} = 85^{\circ}C$	128	Ω
m	Mass	Α.	18	g
	Standards 3)		EN 50178 : 19	997

$I_{PN} = 100 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available.

Dimensions LA 100-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins

0.63 x 0.56 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.